总结数字推理十大规律(四)
备考规律七:求差相减式数列
规律点拨:在国考中经常看到有“第一项减去第二项等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
【例题】8,5,3,2,1,( )
A.0
B.1
C.-1
D.-2
【答案】B选项
解析】这题与“求和相加式的数列”有点不同的是,这题属于相减形式,即“第一项减去第二项等于第三项”。我们看第一项8与第二项5的差等于第三项3;第二项5与第三项3的差等于第三项2;第三项3与第四项2的差等于第五项1;
同理,我们推敲,第六项应该是第四项2与第五项1的差,即等于0;所以A选项正确。
备考规律八:“平方数”数列及其变式
【例题】1,4,9,16,25,()
A.36
B.28
C.32
D.40
【答案】A选项
【解析】这是一个典型的“平方数”的数列,即第一项是1的平方,第二项是2的平方,第三项是3的平方,第四项是4的平方,第五项是5的平方。同理我们推出第六项应是6的平方。所以A选项正确。
(一)“平方数”数列的变形一:
【例题】0,3,8,15,24,()
A.35
B.28
C.32
D.40
【答案】A选项
【解析】这是一个典型的“立方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方减去1,第二项是2的平方减去1,第三项是3的平方减去1,第四项是4的平方减去1,第五项是5的平方减去1.同理我们推出第六项应是6的平方减去1.所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,李老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个变形:
【例题变形】2,5,10,17,26,()
A.37
B.38
C.32
D.40 【答案】A选项
【解析】这是一个典型的“平方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方加上1,第二项是2的平方加上1,第三项是3的平方加上1,第四项是4的平方加上1,第五项是5的平方加上1.同理我们推出第六项应是6的平方加上1.所以A选项正确。
(二)“平方数”数列的变形二:
【例题】2,6,12,20,30,()
A.42
B.38
C.32
D.40
【答案】A选项
【解析】这就是一个典型的“平方数”的数列变形,其规律是每一个立方数加去一个数值,而这个数值本身就是有一定规律的。即第一项是1的平方加上1,第二项是2的平方加上2,第三项是3的平方加上3,第四项是4的平方加上4,第五项是5的平方加上5.同理我们假设推出第六项应是6的平方加上X.而把各种数值摆出来分别是:1,2,3,4,5,X.由此我们可以得出X=6,即第六项是6的平方加上6,所以A选项正确。